TDA Progress Report 42-62

January and February 1981

A Decoding Failure Test for the Transform
Decoder of Reed-Solomon Codes

R. L. Miller and T. K. Truong

Communications Systems Research Section

I.S. Reed

Department of Electrical Engineering
University of Southern California

Using a finite field transform, a transform decoding algorithm is able to correct
erasures as well as errors of any (n, k, d) Reed-Solomon code over the finite field GF(q).
This article discusses a pitfall of transform decoding and how to avoid it. A simple test is
given so that the decoder will fail to decode instead of introducing additional errors,
whenever the received word contains too many errors and erasures.

l. Introduction

Voyager, Galileo, and International Solar Polar Mission
(ISPM) each have the capability to employ a coding scheme
consisting of a (7, 1/2) convolutional inner code concatenated
with a (255, 223) Reed-Solomon outer code. A Reed-Solomon
decoding algorithm capable of correcting both errors and era-
sures was described in Ref. 1. This algorithm is called “trans-
form decoding,” since it resembles the Fast Fourier Transform
(FFT). This feature allows an efficient software implementa-
tion. An additional advantage to transform decoding is that it
is amenable to analysis by Fourier methods. This article pro-
poses a modification of the algorithm which will essentially
eliminate decoding mistakes.

Consider any (#, k, d) Reed-Solomon (RS) code over GF(q)
Ref. 2. Then any combination of s erasures and # errors can be
corrected if 2¢ + s <d. In the event that 2f + s =d, it is
desirable to have the decoder respond with a decoding failure,
i.e., with an alarm telling of the inability to decode. Unfortu-
nately, in some cases it is also possible for a decoding error to

occur; this will happen if the received word is incorrectly
decoded, thereby yielding the wrong code word.

Berlekamp and Ramsey (Ref. 3) showed that for the case
s + 2t =d +1, a lower bound to the probability of incorrectly
decoding using any algorithm is given by

(”;_s} ’) (@-1)-(t- 1)

Recently, a simplified algorithm was developed (Ref. 1) for
correcting erasures and errors of RS codes over GF(g), using
the finite field transform method. In this article, it is shown
that with transform decoding, decoding errors will always
occur if s + 2¢ 2 d, unless proper care is taken.

Il. Transform Decoding Algorithm

Suppose that ¢(X) is transmitted and r(X) = c¢(X) + e(X) is
received, containing § erasures at locations {Z,, Z,,..., Z;}

121

and ¢ (unknown) errors. Then transform decoding of the

(n, k, d) Reed-Solomon code generated by

d-1

gx) = [x-e)

=1

(where o is a primitive nth root of unity) consists of the

following steps:

Step 1. Compute the syndromes:
S, = ri@) for 1 <j<d-1.

Step 2. Compute the erasure locator polynomial:
8 L)
rx) = [l&x-2zp= 2 c1/nxs.
j=1 j=0
Step 3. Compute
8
T, = 3, /S, forl<i<d-1-s.
j=0

Step 4. Compute the error-locator polynomial

o(X)

from

12°°°° .d“‘l"S.

See Ref. 4 for details.

Step 5. Compute

Stz
MX) = oX)71(X) = Y DX

=0
Step 6. Compute the “extended” syndromes by

st
S = Z(—l)'uiS,_i ford<I<n.

i=1

122

Step 7. Compute the error-erasure pattern

n-1
e(X) = E el.Xi,
i=1

by
1 »
e, = ;S(a 9,
where
n-1
S(x)y=), 85X,
1=0
and
SO = Sn

Step 8. Decode r(X) to yield ¢(X) = r(X)- e(X).

Ill. A Transform Decoding Pitfall

This section discusses the proclivity of a transform decoder
for making its own errors instead of flagging as uncorrectable a
received word containing ¢ errors and s erasures, when 2f +
s > d. It will be shown in the next theorem that a transform
decoder does its task perhaps a little too well.

Theorem 1

The output of a transform decoder will always be a code
word, regardless of the input.

Proof
Suppose that

n—1
= Y rx
=0

is input to the decoder, and

n—-1
e(X) = Z eiXi

i=0

is the output of Step 7 in the decoding algorithm. Then h(X) =
f(X) - e(X) will be a code word for the following reason. If
1<j<d-1,then

W) = fe))- e(@)

=5,- e(o/) by Step 1.

But,

Y n_l .
e(a)= e,a’
=0
n-1 1 .
= Z —n—S(oz"‘)ozi’ by Step 7
i=0
1 n—1 n-1 : 3
= Y 2 Slaz"” a¥
=0 \I=0
1 n-1 n-1
=0 i=0

= Sl., since the inner sum vanishes unlessj = [.

Thus, A(e/) =8, - e(ef) = 0 for 1 <j<d- 1, and f(X)- e(X)
is a code word.

IV. A Simple Method for Detecting Decoding
Errors

The previous theorem indicates that a transform decoder
will allow errors to go undetected in the decoding process
unless care is taken. The method to be presented here allows
the decoder to detect when it makes a mistake, whenever it is
theoretically possible. There are instances, as described in
Ref. 3, when no decoder can detect that it has erred. For
example, if d - 1 erasures occur, then the decoder will “cor-
rect” those positions yielding a code word, no matter how
many additional errors are present. The next theorem provides
a test so that decoding failures can be declared instead of
allowing the decoder to output bad data unknowingly. Of
course, when a decoding failure occurs, the best policy is to
leave the received word unaltered.

Theorem 2

Suppose that ¢ errors and s erasures have occurred, and that
the Hamming weight of the error vector computed by the
decoder is w. Then the decoder has erred if 2w =d +s.

Proof

The decoder errs whenever 2¢ + s = d. Unfortunately, ¢ is
unknown; only s and d are known by the decoder. Now since
w=¢t+s,if

2t+s=d,
then
2(W - s) ts= ds

hence

2w=d +s.

123

124

References

. Reed, 1. S., and Truong, T. K., “A Simplified Algorithm for Correcting Both Errors

and Erasures of R-S Codes,” Deep Space Network Progress Report 42-48, September
and October 1978, Jet Propulsion Laboratory, Pasadena, Calif., Dec. 15, 1978.

. McEliece, R. J., The Theory of Information and Coding, Addison-Wesley, London,

1977.

. Berlekamp, E. R., and Ramsey, J. L., “Readable Erasures Improve the Performance of

Reed-Solomon Codes,”” IEEE Trans. Information Theory, Vol. IT-24, No. 5, Sept.
1978.

. Reed, L S., Scholtz, R. A., Truong, T. K., and Welch, L. R., “The Fast Decoding of

Reed-Solomon Codes Using Fermat Theoretic Transforms and Continued Fractions,”
IEEE Trans. Information Theory, Vol. IT-24, No. 1, Jan. 1978,

